Surfactant micelles: model systems for flow instabilities of complex fluids.

نویسندگان

  • Christophe Perge
  • Marc-Antoine Fardin
  • Sébastien Manneville
چکیده

Complex fluids such as emulsions, colloidal gels, polymer or surfactant solutions are all characterized by the existence of a "microstructure" which may couple to an external flow on time scales that are easily probed in experiments. Such a coupling between flow and microstructure usually leads to instabilities under relatively weak shear flows that correspond to vanishingly small Reynolds numbers. Wormlike micellar surfactant solutions appear as model systems to study two examples of such instabilities, namely shear banding and elastic instabilities. Focusing on a semidilute sample we show that two-dimensional ultrafast ultrasonic imaging allows for a thorough investigation of unstable shear-banded micellar flows. In steady state, radial and azimuthal velocity components are recovered and unveil the original structure of the vortical flow within an elastically unstable high shear rate band. Furthermore thanks to an unprecedented frame rate of up to 20,000 fps, transients and fast dynamics can be resolved, which paves the way for a better understanding of elastic turbulence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flow of entangled wormlike micellar fluids: Mesoscopic simulations, rheology and -PIV experiments

There is a great need for understanding the relationship between the structure and chemistry of surfactants forming wormlike micelles, and heir macroscopic flow properties. Available macroscopic Rheological Equations of State (REoS) are often inadequate to predict flow behaviour in omplex geometries or even to describe the full set of rheological measurements. In this paper, we show how the lin...

متن کامل

Strong Flows of Viscoelastic Wormlike Micelle Solutions

The unique rheological properties of viscoelastic wormlike micelle solutions have led to their broad use as rheological modifiers in consumer products such as paints, detergents, pharmaceuticals, lubricants and emulsifiers. In addition, micelle solutions have also become increasingly important in a wide range of industrial and commercial applications including agrochemical spraying, inkjet prin...

متن کامل

SHEAR BANDING IN WORMLIKE MICELLAR SOLUTIONS Summer School on Neutron Scattering and Reflectometry

Wormlike micelles are an important class of surfactant micellar architectures that find use in applications ranging from consumer products to energy and nanomaterials. Many wormlike micellar systems exhibit a flow instability known as shear banding, characterized by an inhomogeneous flow field. Although many of the proposed mechanisms and theories for shear banding revolve around fluid microstr...

متن کامل

Wormlike micelles under shear flow: A microscopic model studied by nonequilibrium-molecular-dynamics computer simulations.

Aqueous surfactant solutions are known to form elongated micelles under certain thermodynamic conditions characterized by surfactant concentration, salinity or temperature [1,2]. In the semidilute regime these linear and flexible particles, with persistence lengths varying from 15 to 150 nm [3], form an entangled viscoelastic network. Recently observed phenomena such as shear banding structure,...

متن کامل

Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: effects of surfactant concentration and ionic environment.

We employ the techniques of microparticle image velocimetry and full-field birefringence microscopy combined with mechanical measurements of the pressure drop to perform a detailed characterization of the extensional rheology and elastic flow instabilities observed for a range of wormlike micellar solutions flowing through a microfluidic cross-slot device. As the flow rate through the device is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European physical journal. E, Soft matter

دوره 37 4  شماره 

صفحات  -

تاریخ انتشار 2014